skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clayton, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present JWST NIRCam (F356W and F444W filters) and MIRI (F770W) images and NIRSpec Integral Field Unit (IFU) spectroscopy of the young Galactic supernova remnant Cassiopeia A (Cas A) to probe the physical conditions for molecular CO formation and destruction in supernova ejecta. We obtained the data as part of a JWST survey of Cas A. The NIRCam and MIRI images map the spatial distributions of synchrotron radiation, Ar-rich ejecta, and CO on both large and small scales, revealing remarkably complex structures. The CO emission is stronger at the outer layers than the Ar ejecta, which indicates the re-formation of CO molecules behind the reverse shock. NIRSpec-IFU spectra (3–5.5μm) were obtained toward two representative knots in the NE and S fields that show very different nucleosynthesis characteristics. Both regions are dominated by the bright fundamental rovibrational band of CO in the two R and P branches, with strong [Arvi] and relatively weaker, variable strength ejecta lines of [Siix], [Caiv], [Cav], and [Mgiv]. The NIRSpec-IFU data resolve individual ejecta knots and filaments spatially and in velocity space. The fundamental CO band in the JWST spectra reveals unique shapes of CO, showing a few tens of sinusoidal patterns of rovibrational lines with pseudocontinuum underneath, which is attributed to the high-velocity widths of CO lines. Our results with LTE modeling of CO emission indicate a temperature of ∼1080 K and provide unique insight into the correlations between dust, molecules, and highly ionized ejecta in supernovae and have strong ramifications for modeling dust formation that is led by CO cooling in the early Universe. 
    more » « less
  2. Abstract Continuum polarization over the UV-to-microwave range is due to dichroic extinction (or emission) by asymmetric, aligned dust grains. Scattering can also be an important source of polarization, especially at short wavelengths. Because of both grain alignment and scattering physics, the wavelength dependence of the polarization, generally, traces the size of the aligned grains. Similarly because of the differing wavelength dependencies of dichroic extinction and scattering polarization, the two can generally be reliably separated. Ultraviolet (UV) polarimetry therefore provides a unique probe of the smallest dust grains (diameter$$< 0.09~\upmu \text{m}$$ < 0.09 μm ), their mineralogy and interaction with the environment. However, the current observational status of interstellar UV polarization is very poor with less than 30 lines of sight probed. With the modern, quantitative and well-tested, theory of interstellar grain alignment now available, we have the opportunity to advance the understanding of the interstellar medium (ISM) by executing a systematic study of the UV polarization in the ISM of the Milky Way and near-by galaxies. The Polstar mission will provide the sensitivity and observing time needed to carry out such a program (probing hundreds of stars in the Milky Way and dozens of stars in the LMC/SMC), addressing questions of dust composition as a function of size and location, radiation- and magnetic-field characteristics as well as unveiling the carrier of the 2175 Å extinction feature. In addition, using high-resolution UV line spectroscopy Polstar will search for and probe the alignment of, and polarization from, aligned atoms and ions - so called “Ground State Alignment”, a potentially powerful new probe of magnetic fields in the diffuse ISM. 
    more » « less
  3. ABSTRACT JWST/NIRCam obtained high angular resolution (0.05–0.1 arcsec), deep near-infrared 1–5 $$\mu$$m imaging of Supernova (SN) 1987A taken 35 yr after the explosion. In the NIRCam images, we identify: (1) faint H2 crescents, which are emissions located between the ejecta and the equatorial ring, (2) a bar, which is a substructure of the ejecta, and (3) the bright 3–5 $$\mu$$m continuum emission exterior to the equatorial ring. The emission of the remnant in the NIRCam 1–2.3 $$\mu$$m images is mostly due to line emission, which is mostly emitted in the ejecta and in the hotspots within the equatorial ring. In contrast, the NIRCam 3–5 $$\mu$$m images are dominated by continuum emission. In the ejecta, the continuum is due to dust, obscuring the centre of the ejecta. In contrast, in the ring and exterior to the ring, synchrotron emission contributes a substantial fraction to the continuum. Dust emission contributes to the continuum at outer spots and diffuse emission exterior to the ring, but little within the ring. This shows that dust cooling and destruction time-scales are shorter than the synchrotron cooling time-scale, and the time-scale of hydrogen recombination in the ring is even longer than the synchrotron cooling time-scale. With the advent of high sensitivity and high angular resolution images provided by JWST/NIRCam, our observations of SN 1987A demonstrate that NIRCam opens up a window to study particle-acceleration and shock physics in unprecedented details, probed by near-infrared synchrotron emission, building a precise picture of how an SN evolves. 
    more » « less
  4. ABSTRACT Modelling the red–blue asymmetries seen in the broad emission lines of core-collapse supernovae (CCSNe) is a powerful technique to quantify total dust mass formed in the ejecta at late times (>5 yr after outburst) when ejecta dust temperatures become too low to be detected by mid-infrared (IR) instruments. Following our success in using the Monte Carlo radiative transfer code damocles to measure the dust mass evolution in SN 1987A and other CCSNe, we present the most comprehensive sample of dust mass measurements yet made with damocles, for CCSNe aged between 4 and 60 yr after outburst. Our sample comprises multi-epoch late-time optical spectra taken with the Gemini/Gemini Multi-Object Spectrographs (GMOS) and Very Large Telescope (VLT) X-Shooter spectrographs, supplemented by archival spectra. For the 14 CCSNe that we have modelled, we confirm a dust mass growth with time that can be fit by a sigmoid curve that is found to saturate beyond an age of ∼30 yr, at a mass of 0.23$$^{+0.17}_{-0.12}$$ M⊙. For an expanded sample including dust masses found in the literature for a further 11 CCSNe and six CCSN remnants, the dust mass at saturation is found to be 0.42$$^{+0.09}_{-0.05}$$ M⊙. Uncertainty limits for our dust masses were determined from a Bayesian analysis using the affine invariant Markov chain Monte Carlo ensemble sampler emcee with damocles. The best-fitting line profile models for our sample all required grain radii between 0.1 and 0.5 $$\mu$$m. Our results are consistent with CCSNe forming enough dust in their ejecta to significantly contribute to the dust budget of the Universe. 
    more » « less